wse Biochemustry (487)

15P/210/30

Question	Booklet	No	

				_				
		(To be	e filled up	by the	candida	te by b	ue/bla	ack ball-point pen)
Roll No.								
Roll No. (Write the	digits in	words)			*****			
Serial No.	of OMR	Answer	Sheet	.,	••••••			
Day and I	Date		*124*******		•••••			(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 28+2

İ

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 2 Hours/घण्टे

Full Marks/पूर्णांक : 450

- Note: (1) Attempt as many questions as you can. Each question carries 3 marks.

 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
 - 1. The process by which the particles move a region of higher concentration to a lower concentration to spread uniformity is called as
 - (1) osmosis

(2) diffusion

(3) transportation

(4) conduction

(P.T.O.)

2.	The force with which the surface	molecules of a liquid are held together is called
	(1) tensile strength	(2) power
	(3) cohesive	(4) surface tension
3.	Chief cells secrete	v.
	(1) NaOH (2) HCl	(3) NaHCO ₃ (4) enzymes
4.	If a reaction is at equilibrium,	the free energy, AG is equal to
*	(1) 1 (2) 2	(3) 0 (4) 10
5.	Which are the non-covalent bone points of water?	is responsible for the high melting and boiling
	(1) H-bonds	(2) van der Waals' force
	(3) hydrophobic force	(4) electrostatic interactions
s*==	£	g. F
6.	Which of the following is a suici	ide enzyme?
	(1) Głucokinase	(2) LDH
	(3) Cyclooxygenase	(4) GOT
7.	Enzyme trypain converts	e f en
	(1) amino acids into proteins	(2) glucose into glycogen
	(3) starch into sugar	(4) proteins into amino acids
(333)	n ee	2

8.	Why is red wine p	particularly benefic	ial?	×.			
	(1) It contains vita	amins	(2)	It contains pro	per	carbohydra	te
	(3) It contains an	tioxidants	(4)	It contains pro	tein	s	
9.	Which of the follow a protein?	ving is not useful it	ide	ntifying the ami	no-t	erminal res	idue of
	(1) Cyanogen bron	mide	(2)	Dansyl chlorid	e		
	(3) Fluorodinitrob	enzene	(4)	Phenyl isothio	cyar	ate	e . *
10.	Which of the follow a water-soluble pr	ving amino acid re rotein?	sidu	es is likely to be	fou	nd on the in	side of
	(1) His	(2) Asp	(3)	Ile.	(4)	Arg	
11.	The water soluble	part of starch is					
	(1) amylose	(2) amylopectin	(3)	pectin	(4)	glycogen	넴
12.	The resistance exp	perience by one lay	er o	f a liquid in mo	ving	over anothe	er layer
	(1) friction	(2) viscosity	(3)	force	(4)	torque	
13.	Which of the follo	owing is true?					,
	(1) Apoenzyme -	coenzyme = holoen	zym	•			8
	(2) Apoenzyme +	coenzyme = holoer	zym	с .			
	(3) Apoenzyme =	hołoenzyme					
	(4) Coenzyme = h	oloenzyme					3.87
222)		;	3		+		(P.T.O.)

İ

14.	Which of the foll as an antioxidar	owing is the impo	rtant reactive group	of glutathione in its role
	(1) Hydroxyl gro	шр	(2) Sulfhydryl g	roup
	(3) Keto group		(4) Carboxyl gro	oup
15.	Which of the fol	lowing is not a di	etary antioxidant?	
	(1) Vitamin C		(2) Vitamin E	o w m
	(3) Vitamin K		(4) Beta-caroten	ie.
16.	If the average mo	elecular weight of a le up of 10 amino	one amino acid is 11 acids is expected	10, the molecular weight to be
	(1) 1100	(2) 744	(3) 938	(4) 876
17.	How many molect	ules of vitamin A a	re formed from one r	nolecule ofβ-carotene?
	(1) 1	(2) 2	(3) 3	(4) 4
18.	In photosynthesis oxidase utilizes	and cellular resp	piration processes, (the catalyst cytochrome
9	(1) Cu	(2) Fe	(3) Cu and Fe	(4) Ni
19.	Who gave the na:	me 'nucleic acid' ?	•	
*	(1) Altmann	(2) Franklin	(3) Watson	(4) Crick
(333)			4	\$P

20.	The offsprings obt	ain how much g	enes f	rom father?		•	(40)	
165	(1) 25%	(2) 75%	(3)	50%	(4)	100%		
21.	A child with IQ 14	40 belongs to wh	ich ce	itegory?				
	(1) Genius	(¥	(2)	Superior				
	(3) Most superior		(4)	Average			8	
22.	In which era life	was evolved?					*1	
-	(1) Precambrian e	ra	(2)	Mesozoic era			E AMERICAN AMERICAN	,
	(3) Cenozoic era		(4)	Paleozoic era				
	s = 1 cz s			e .		ř.		
23.	A specific charact	eristic of class in	18 o cts	is			0	
	{1} two pairs of le	egs	(2)	three pairs of	legs			
ā _v	(3) four pairs of l	egs	(4)	five pairs of k	gs	rz V	Si Si Si Si Si Si Si Si Si Si Si Si Si S	
24.	Sleeping sickness	occurs due to					e e	
	(1) euglena	## ##	(2)	plasmodium				
٠	(3) crustacean		(4)	protozoa				
25.	Silverfish is			201				
	(1) insect	(2) fish	(3)	crustacean	(4)	bird	٠	
			5	*		**	(P.T.C).}
333)			-				The second secon	

i

26.	Hydra moves wit	th fast speed by	. 2	g no ga se
	(1) looping		(2) walking o	n foot
	(3) creeping		(4) somar sa	lting
27.	On which segme organ?	nt of the body, t	he earthworm po	ssesses male reproductory
	(1) Segment 18	r	(2) Segment	19
	(3) Segment 20		(4) Segment	21
28.	Tendons connect	ğ 10	•	at at
	(1) bone to bone	2007	(2) bone to n	nuscie
	(3) muscle to mi	iscle	(4) skin to m	uscle.
29.	Which of the foll	owing is not an	enzyme?	e e
	(1) Maltase	(2) Amylose	(3) Trypsin	(4) Lipase
30.	Most of the mem	bers of vitamin I	3 complex are pri	marily used as
	(1) hormones		(2) enzymes	
	(3) coenzymes		(4) digestive (elementa
31.	Chloride shift in	blood is essentie	l for the transpor	t of which gas?
	(1) O ₂	(2) N ₂	(3) CO ₂	(4) CO
(333)			6	,

2.	Tric	uspid valve ex	ists detween		**		t	
	(1)	right auricle a	nd ventricle	(2)	both auricles			
ň	(3)	both ventricles		(4)	left auricle and	Vel	ntricle	ř
3.	Har	otens are			,			
~	_	small molecule	ES 2	(2)	large molecules	3		
	(3)	medium size I	noiccules	(4)	inclusion bodie	:8		
4.	Hov	w much protei	n is there in HDL?	į.	s	,		
	(1)	10%	(2) 20%	(3)	50%	(4)	35%	
15.	On	e letter used to	o denote tryptopha	n is			6	
***	(1)	w	(2) R	(3)	L	(4)	K	
36.	Dea	amination of c	ytosine leads to					
	(1)	thimine	(2) uracil	(3)	guanine	(4)	adenine	
37.	Мо	re than one co	odon can specify th	ne sa	ame amino acid	. Th	is is called	
e e	(1)	degeneracy	(2) regeneracy	(3)	continuity	(4)	universality	
33)			7	•	×		(P.T	.0.)
,		8					(***	

(333)

38.	If the cytosine of would be	content of a duplex	is 30% of the total b	pases, the adenine content
	(1) 10%	(2) 20%	(3) 30%	(4) 60%
39.	Which of the in	mmunoglobulins c	rosses the placenta	and reaches to fetus?
	(1) IgA	(2) IgM	(3) IgG	(4) IgE
40.	Light reactions	take place in		
	(1) stroma		(2) grana	6
	(3) endoplasmi	c reticulum	(4) Golgi body	·
41.	In cell cycle, th	e pre-DNA synthe	sis phase is termed	ás
	(1) G2 phase	(2) S phase	(3) G1 phase	(4) M phase
42.	Crossing-over to	akes place in whic	h stage?	
	(1) Pachytene	(2) Zygotene	(3) Leptotene	(4) Diplotene
43,	The mixture of	H ₂ and CO is an	industrial fuel know	vn as
	(1) fuel gas		(2) water gas	
9	(3) industrial ga	IB	(4) vapour	
			S	-

44.	On spot treatment of environment	pollut	ant is known as
0.7	(1) In situ	(2)	Ex situ
	(3) local	(4)	transported
45.	Endorphin is a	ri e	<u>. </u>
	(1) lipid	(2)	protein
œ	(3) carbohydrate	(4)	nucleic acid
46.	The loss or addition of one or mor	re chr	omosomes is known as
	(1) polyploidy	(2)	aneuploidy
	(3) euploidy	(4)	aploidy
47.	Who said, "ontogeny recapitulates	ontog	eny" ?
	(1) Robert Hook	(2)	Haeckel
	(3) Baltimore	(4)	Crick
48.	The science of improving human s	stock i	s known as
	(1) genetics	(2)	biology
	(3) eugenics	- (4)	animal science
333)	a a	9	(P.T.O.)

49.	Adenovirus contains
	(1) double-stranded DNA, nonenveloped
	(2) double-stranded DNA, enveloped
	(3) double-stranded RNA, nonenveloped
	(4) single-stranded RNA, enveloped
50.	Any gene that is placed into a plasmid is called
	(1) small plasmid (2) DNA
	(3) insert (4) trans gene
51 .	A single stranded DNA/RNA molecule used to detect the presence of a complementary nucleic acid is called
	(1) sensor (2) probe (3) insert (4) detector
52.	Oxidative stress is caused due to
	(1) production of excessive free radicals
	(2) production of excessive HCl in stomach
	(3) indigestion
Š	(4) low BMR

53.	Adjuvants are the agents that		2				
	(1) decrease immunogenicity of an	antig	en				
	(2) increase immunogenicity of an antigen						
	(3) decrease immunity	21	· 5				
	(4) increase immunity						
15		50.00					
54.	Confining the enzyme molecules to	a di	stinct phase is known as				
	(1) immobilisation	(2)	purification				
	(3) adsorption	(4)	absorption				
55.	An analytical device which employs a with an analyte and measures the g called as	a bio encr	logical material to specifically interact ated electrical signal by transducer is				
	(1) electrometer	(2)	biosensor				
	(3) conductor	. (4)	amplifier				
56.	The disease of tomato is caused by						
	(1) Alternaria solani	(2)	Fusarium oxysporium				
	(3) Helminthosporium sativum	(4)	Erysiphe polygoni				
333)	1	1	(P.T.O.				

57.	'Caryopsis' is the fruit in	member of the family
	(1) Fabaceae	(2) Asteraceae
	(3) Poaceae	(4) Apiaceae
58.	Which of the following an	ntibiotics inhibits the translation in eukaryotes?
	(1) Tetracyclin	(2) Puromycin
20	(3) Penicillin	(4) Chloromycetin
59.	Polymerase chain reaction	was developed by
	(1) Watson and Crick	(2) Har Govind Khorana
	(3) Albert Smith	(4) Kary Mulis
60.	The first immunoglobulin	synthesized by the fetus is
	(1) IgA (2) IgG	(3) IgM (4) IgE
61.	When atoms or ions are mi	issed or misplaced in a crystal, the defects are called
	(1) surface defect	(2) point defect
•	(3) unit cell defect	(4) displacement
62.	The molarity of a 250 ml	solution containing 0.1 mole of NaOH would be
	(1) 0·1 mole/litre	(2) 0.2 mole/litre
	(3) 0·3 mole/litre	(4) 0.4 mole/litre
(333)		. 19

(P.T.O.)

63.	After dissolution of iodine in a solution, the entropy						
	(1) increases						
	(2) decreases	. *		2 1			
	(3) first increa	ses and then decre	eases	26			
	(4) first decres	ses and then incre	cases				
64.	The order of re	eaction for radioact	tive decay is				
	(1) first	(2) second	(3) third	(4) zero			
65.	What is produc	ed when ethanol va	pours are passed over	er alumina at 600 K?			
	(1) Ethane	(2) Ethene	(3) Acetylene	(4) Methane			
66.	The metal oxid	le which is known	as philosopher's wo	ool			
	(1) ZnO	(2) CuO	(3) FeO	(4) CdO			
67.	Give one exam	ple of substance u	sed in hair dye	2			
	(1) amino phe	nol	(2) cyclomethic	one			
M 40	(3) butylene gl	lycol	(4) propylene g	lycol			
68.	I mM is equal	to		*			
22	(1) 1 nmole/m	ग	(2) 1 μmole/ml				
	(3) 1 pmole/m	1	(4) 1 fmole/ml				
			89				

13

(333)

69.	The sum of p	Ka and pKb is equ	al to		
	(1) 12	(2) 14		(4) 7	
70.	How many dis	ferent stereoisomer	s are possible with	an aldohexeec?	
	(1) 4	(2) 8	(3) 12	(4) 16	
71 .	A DNA has 2 would be	1×10 ⁵ nucleotides	in its coding stran	d. The number of codo	ns
	(1) 7×10 ⁴	(2) 6×10 ³	(3) 7×10^3	(4) 4×10^3	
72 .	In which of th	e following compo	nds C—H bond ler	ngth is minimum?	
	(1) Ethane		(2) Ethene		
	(3) 1,2-dichlor	roethene	(4) 1,2-dichlore	pethane	
73.	Freons are	er a	<i>*</i>		
	(1) chlorofluor	ocarbona	(2) aromatic m	olecules	
	(3) unsaturate	ed fats	(4) carbohydra	tes	
74.	Cryophytic alg	ae grow on		a " y	
	(1) rocks	(2) water	(3) soil	(4) ice and snow	
¥	æ	i.e.	0 *		

14

	An animal which is unicellular.	microscopic with no tissues is called as	
7 5 .	(1) Metazoa (2) Protozoa	(3) Chordata (4) virus	
76.	The organism which contains bot	th the chloroplast and flagella is	
	(1) Paramecium	(2) Amoeba	
	(3) Euglena	(4) Trypanosoma	
77.	Which one is commonly known a	as 'pond silk' ?	
	(1) Ulothrix	(2) Spirogyra	
	(3) Chara	(4) Batrachoepermum	
78.	Litmus is a natural dye obtained (1) algae (2) fungi	d from (3) lichens (4) corals	•
79.	Bordeaux mixture consists of	•	
	(1) lime and calcium sulphate	(2) sulphur and lime	
	(3) copper sulphate and lime	(4) copper sulphate and sulphur	
80.	The nurse cells are present in t	the sporogonium of	
	(1) Riccia	(2) Marchantia	
	(3) Angiosperms	(4) Gymnosperms	
		e to	>

10		(C_2)	19		
81.	Which of the fo	llowing is classifie	as an eastern cycad?		
	(1) Dioon	(2) Stangeria	(3) Ceratozamia	(4) Zamia	
82.	Which of the fo	llowing cells are p	resent only in sponge	es?	
	(1) Erythrocytes		· (2) Blastocytes		
	(3) Neurons		(4) Funnel cells	. «	
83.	Which of the fol	lowing is called 'T	he Lantern of Aristot	le' ?	
	(1) Starfish	(2) Sea anemon	e (3) Sea archin	(4) Hydra	
84.	'Hipnotoxin' is fo	ound in			
	(1) Nematocysts		(2) Sponges		
	(3) Ascaris		(4) Protozoans		
85.	The common fea	ture of rennin, am	ylase and trypsin is	that they are	
	(1) proteins		(2) vitamins		
	(3) nucleic acids	e	(4) carbohydrates	ter ti	
8 6.	The vitamin need	led for maturation	of erythrocytes is	131	
	(1) C	(2) B ₁₂	(3) D	(4) K	

16

57 .	Light reaction in photosynthesis produces			
	(1) oxidising entity	(2) reducing entity	ē	
	(3) CO ₂	(4) glucose		
88.	RuDP carboxylase can utilise followi	ng as a substrate	27	
×	(1) CO ₂ (2) O ₂	(3) O ₂ and CO ₂ (4) water		
89 .	The molecule which binds to the ac	tive site in an enzyme is called	5	
	(1) substrate	(2) activator	*	
	(3) inactivator	(4) non-competitive inhibitor		
90.	The genetic material of Simian Virus	s 40 (SV 40) is		
	(1) DNA	(2) RNA	13†	
	(3) RNA-DNA hybrid	(4) peptidonucleic acid	3	
			20	
91.	The fibronectin is a	(2) glycoprotein	*	
	(1) nucleoprotein	(4) phosphoprotein		
	(3) lipoprotein	(4) buoghnoh-anar		
92.	The red pigment found in the ripe	tomatoes are called	B 7	
	(1) lycopene (2) leukoplast	(3) chloroplast (4) carotene		
	*	a a	m T (A)	
	1'	7	(P.T.O.)	

17

(333)

93.	Replication takes place in	
	(1) cytoplasm	(2) nucleus
*	(3) Golgi body	(4) endoplasmic reticulum
94.	The transcription in prokaryotes is	catalyzed by
*	(1) RNA polymerase I	(2) DNA polymerase II
	(3) RNA polymerase II	(4) DNA polymerase III
95.	Nucleoli are rich in	
	(1) RNA	(2) carbohydrates
	(3) DNA	(4) fatty acids
96.	EPG factor is also called as	
	(1) aminoacyltransferase	(2) oxidase
	(3) hydrolase	(4) translocase
97.	Lac Operon is	•
	(1) inducible-repressible system	(2) repressible system
	(3) inducible system	(4) sluggish system
98.	Polytene cells are destined to die b	coause they are
	(1) unable to undergo mitosis	(2) unable to undergo meiosis
	(3) unable to undergo maturation	* ************************************
333)	10	

99.	9. Which one from the following is an alkaloid?			
	(1) Menthol	(2) Mor	hine	
	(3) Anthocyanin	(4) Benz	oquinone	*
.00.	Artemisin, a plant product, is used	against		
12	(1) filariasis	(2) asca	riasis	
×.	(3) malaria	(4) cand	ег	
01.	The chemical nature of penicillin is			
	(1) polyene	(2) pept	ide	
	(3) aminoglycoside	(4) epir	olactone	
02.	Nitrogenase is protected from O2 t		*1	
	(1) N ₂	(2) hae	noglobin	31
	(3) myoglobin	(4) legh	emoglobin	8.
LO3.	Satellite DNA is made up of		*	3 . €
	(1) tandemly repeated sequences	(2) uni	que sequences of DNA	
	(3) minichromosomes	(4) inte	rspersed repeated sequer	nces
104.	Protein transport into mitochondri	takes pl	ace	
	(1) co-translationally	(2) pos	t-translationally	
	(3) via peroxisomes	(4) thre	ough ER-Golgi pathway	
(333)		9		(P.T.O.)

İ

105.	Collagen is rich in				
	(1) histidine	(2) hydroxyproline			
	(3) tryptophan	(4) alenine	•		
106.	Measles is caused by				
	(1) bacteria	(2) Puccinia virus			
	(3) Rubeola virus	(4) fungi			
107.	What would be a likely explana	tion for the existence of pseudogener	•?		
	(1) Gene duplication				
	(2) Gene duplication and mutation events				
	(3) Evolutionary pressure				
	(4) Unequal crossing-over	e	8		
108.	Which of the following modificat	ion leads to protein degradation?			
	(1) Acetylation	(2) Phosphorylation			
	(3) Ubiquitination	(4) Methylation			
109.	During mismatch repair in E. co	di, the parental strand is recognized	hu		
	(1) single-stranded break	(2) glycosylated adenines	٠,		
	(3) double-stranded breaks	(4) methylated adenines			
333)	35 4	20.			

110.	Which of the following is a role of gRNA?			
	(1) Self-splicing	(2) Polyadenylation		
	(3) RNA splicing	(4) Chemical modification of rRNA		
111.	Most protection against viral disea activities of	se in the body takes place through the		
	(1) interferon molecules	(2) penicillin molecules		
	(3) antigen molecules	(4) antibody molecules		
112.	Skin cancer is induced by which typharmful UV rays in sunlight?	se of DNA damage caused by exposure to		
	(1) Depurination	(2) Deamination		
	(3) Pyrimidine dimer formation	(4) Alkylation		
113.	Cesium (Cs) belongs to			
	(1) sl-block (2) s2-block	(3) p2-block (4) p5-block		
114.	Which one of the following reaction structure?	n intermediates does not have a planar		
	(1) Alkyl carbocation	(2) Alkyl carbanion		
	(3) Alkyl free radical	(4) Singlet carbene		
(333)	. 21	(P.T.O.)		

115.	The master brake of the cel	i cycle is	a .	* #		
	(1) cyclin proteins	. (2)	p21			
	(3) Rb protein	(4)	p7			
116.	Monopolin is a	e e	19			
	(1) complex carbohydrate	(2)	mitosis specifi	c protein complex		
	(3) lipid	(4)	meiosis specifi	c protein comple		
117.	The pyrimidine bases prese	nt in DNA ar	ne .	e a		
	(1) cytosine and adenine	(2)	cytosine and	guanine		
	(3) cytosine and thymine	(4)	cytosine and	aracil:		
		3.63				
118.	Germ-line cells give rise to					
	(1) eggs	(2)	sperms			
	(3) eggs or sperms	(4)	somatic cells	2		
119.	Which of the following is n	nost stable co	cosystem?			
	(1) Forest (2) Gras	s land (3)	Ocean	(4) Desert		
	1	8	25.00	*		
120.	Maximum biodiversity occur	re at				
	(1) poles (2) equa	tor (3)	temperate	(4) tropics		
(333)		22				

121.	The innate immune systems include	ae					
	(1) macrophages, neutrophils and dendrites (2) macrophages, neutrophils and RBCs						
	(3) RBCs, chief cells and dendrites	8	s	. 9			
	(4) mast cells, β-cells and dendrite	:8		29			
122.	Adaptive immunity is mediated by						
	(1) T-lymphocytes	(2)	B-lymphocytes	•			
	(3) Both T- and B-lymphocytes	(4)	neutrophils	ē			
123.	Antibodies chemically are		S P				
	(1) proteins	(2)	polysaccharides	9			
	(3) glycoproteins	(4)	complex lipids				
124.	The biologically predominant form	of Di	IA is				
	(1) left-handed Z-DNA	(2)	right-handed B-DNA	×			
	(3) right-handed A-DNA	(4)	left-handed A-DNA	16			
125.	UAA, UAG and UGA encode for						
	(1) 2 amino acids	(2)	3 amino acids				
	(3) 9 amino acids	(4)	No amino acids				
(222)	•	23		(P.T.O.)			

126.	Hydrophobic drug transporter	s found in plasma membrar	e are kept unde			
	(1) channels	(2) pumps	3			
	(3) ABC cassettes	(4) group translocate	ora			
127.	Effect of holding one's breath	on blood pH would be	ı			
	(1) increase in pH	(2) unaltered pH				
	(3) decrease in pH	(4) neutral pH				
128.	The ratio k _{cat} /K _m provides a	good measure of				
	(1) catalytic affinity	(2) catalytic efficienc	y			
	(3) rate of reaction	(4) transition comple	*			
129.	Epimers differ by the configuration about only					
	(1) one carbon atom	(2) two carbon atom	5			
	(3) three carbon atoms	(4) None of the abov	в			
130.	n-Dodecanoic acid known as	auric acid is a				
	(1) protein	(2) nucleic acid				
	(3) fatty acid	(4) polysaccharide				
(333)		24				

131.	The nucleotide sequences of a sh forwards are said to be	ort DNA that read alike backwards and
	(1) consensus sequences	(2) palindromic sequences
	(3) satellite DNA	(4) All of the above
132.	The DNA of phage lambda is	
	(1) single stranded linear DNA	(2) linear duplex DNA
	(3) circular single stranded DNA	(4) circular double stranded DNA
	£ *	* * *
133.	The chemical reaction that converts called	glucose to pyruvic acid in a living cell is
	(1) glycolysis	(2) fermentation
	(3) citric acid cycle	(4) All of the above
134.	Blood clotting factor X is also know	n as
	(1) Fletcher factor	(2) Gageman factor
	(3) Fitzgerald factor	(4) Stuart factor
135.	Dietary niacin is used to synthesize	of the following
	(1) FAD+ (2) NAD+	(3) FADH (4) CoA-SH
la		
(333)	25	(D T C)
(200)	23	(P.T.O.)

136.	Grasses are	¥ ₁₀ 8		~ · · · · · · · · · · · · · · · · · · ·	•	-25	景泉
	(1) C ₃ plants		(2)	C ₄ plants			
	(3) succulent plan	t	(4)	All of the abov	C.		ŧs:
137.	Fusion between motile gametes of unequal size is known as						
	(1) isogamy		(2)	anisogamy			•
	(3) dichogamy		(4)	hologamy			
138.	The edible part of	litchi is			÷		
	(1) mesocarp	(2) thalamus	(3)	aril .	(4)	seed	coat
139.	Body in Scoliodon	is covered by					٠
	(1) dermal plates		(2)) placoid scales	i.		
	(3) cycloid scales		(4) ctenoid scales	Č		
140.	The study of repti	ilea ie known as					
	(1) ornithology		(2	ichthyology			
	(3) herpetology		(4) Carinatae	220		
141.	Sweat glands are absent in the skin of						
	(1) rabbit	(2) man	{3	3) cat	(4)	rat	
			16				

142.	Bipolar neurons	are found in				
	(1) cornea	(2) conjunctiva	(3)	retina	(4) lens	
143.	The muscle fibers	are			2	
2	(1) syncytial		(2)	perimysiu	m .	
	(3) sarcolemma		(4)	endomysiu	ım .	-29
144.	Convergent evolu	tion is illustrated	by	e s	*	
ě	(1) rats and dogs		(2)	starfish ar	d cuttlefish	
	(3) bacterium and	d protozoans	(4)	dogfish an	d whale	
145.	Which of the follo	wing is a stronge	est ac	id?	e e	1
33 B	(1) Cl ₂ CHCOOH		(2)	CIF ₂ CCOO	н	क्ष
	(3) F ₃ CCOOH		(4)	СН ₃ СООН	20	A.
l 46 .	The hybridized st	ate of carbons in	CH ₃ -	-C=CH is		5
	(1) sp2 and sp		(2)	sp3 and sp	P	
	(3) sp		(4)	sp3		
47.	Which of the follo	wing is not a ste	roid h	ormone?		
	(1) Progesterone		(2)	Oxytocin		
	(3) Cortisone		(4)	Estrone	8	
				¥		
883)		2	7		a st	(P.T.O.)

148.	148. The mode of action of a steroid hormone involves			
	(1) binding to a cell membrane	receptor		
	(2) activation of protein kinase			
	(3) modifying gene transcription	n.		
	(4) covalent modification of en	zymes		
149.	The mad cow disease in cattle	is associated to		
	(1) bacteria	(2) prions		
	(3) virus	(4) protozoans		
150.	The cross of FI with its homoz	ygous recessive parent is called as		
	(1) test cross	(2) back cross		
	(3) top cross	(4) direct cross		
	· · · · · · · · · · · · · · · · · · ·			

अभ्यधियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया वायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया वायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रवम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिवे वृत्तों को गाड़ा कर दें। जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर ठक्कित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रकिष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित एंकि के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये विर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केक्ल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-एक परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंढ का/की, भागी होगा/होगी।